Abstract
Aims:: The aim of this study is to compare postcontrast three-dimensional (3D) T1-Sampling perfection with application-optimized contrasts by using different flip angle evolutions, 3D fluid-attenuated inversion recovery (FLAIR), and 3D T1-magnetization prepared rapid gradient echo (MPRAGE) sequences in patients of meningitis. Settings and Design:: A hospital-based cross-sectional study done in the Department of Radiodiagnosis, IGMC Shimla for a period of 1 year from June 1, 2016, to May 30, 2017. Subjects and Methods:: A total of 30 patients suspected of meningitis underwent magnetic resonance imaging evaluation with postcontrast 3D T1-MPRAGE, 3D T1-SPACE, and 3D FLAIR sequences. The abnormal leptomeningeal enhancement was noted by two radiologists together on these sequences and scores were given to the abnormal leptomeningeal enhancement. Statistical Analysis Used:: The sensitivity of 3D T1-SPACE, 3D T1-MPRAGE, and 3D FLAIR was calculated and compared. The level of agreement between these sequences was assessed by kappa coefficient. P < 0.05 was taken as statistically significant. Results:: 3D T1-SPACE shows superiority in meningeal enhancement along basal cisterns, Sylvian fissure and along cerebral convexities. It is also found to be better in delineating parenchymal lesions. 3D FLAIR failed to demonstrate enhancement along cerebral convexities however found to be better than 3D T1-MPRAGE in delineating enhancement along basal cisterns and Sylvian fissures. 3D T1-MPRAGE has shown subtle enhancement in basal cisterns, Sylvian fissure and along cerebral convexities. 3D T1-SPACE, 3D FLAIR, and 3D T1-MPRAGE has sensitivity of 91.67%, 66.67%, and 54.17%, respectively. Conclusion:: Postcontrast 3D T1-SPACE sequence is an excellent tool than postcontrast 3D T1-MPRAGE and 3D FLAIR sequences in the evaluation of meningeal enhancement and depiction of additional lesions in brain parenchyma.
Copyright
Association for Helping Neurosurgical Sick People. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-Non Derivative-Non Commercial License, permitting copying and reproduction so long as the original work is given appropriate credit.
Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License, which permits unrestricted reproduction and distribution, for non-commercial purposes only; and use and reproduction, but not distribution, of adapted material for non-commercial purposes only, provided the original work is properly cited.