Abstract

Role of nitrosative and oxidative stress in neuropathy in patients with type 2 diabetes mellitus

Abstract


OBJECTIVES: Evidences of oxidative and/or nitrosative stress in type 2 diabetes mellitus were demonstrated in experimental and human studies. This study is aimed to assess the serum peroxynitrite and oxidized lipoproteins in patients with type 2 diabetes mellitus presented with clinical and laboratory evidences of peripheral neuropathy. MATERIALS AND METHODS: Eighty four patients with type 2 diabetes mellitus (51 of them had neuropathy) and 31 apparent healthy subjects were studied in the unit of neurophysiology at the University Hospital of Medical College, Al-Nahrin University in Baghdad, Iraq. Neuropathy total symptom score (NTSS), neuropathy impairment score in the lower leg (NIS-LL), and nerve conduction velocity of sensory (ulnar and sural) and motor (ulnar and common peroneal) nerves were used to assess the neuropathy. Fasting venous blood was obtained from each participant for the determination of serum glucose and oxidized lipoproteins. RESULTS: The electrophysiology study revealed significant decrease in conduction velocity of ulnar (sensory and motor components), sural, and common peroneal nerves in diabetic neuropathy compared to diabetics without neuropathy and healthy subjects. Significant high level of serum peroxynitrite was found in diabetic patients with or without neuropathy compared with non-diabetics. The changes in serum-oxidized lipoproteins in patients with diabetics with or without neuropathy were non-significantly differed from healthy subjects. Neither nitrosative stress nor oxidative stress indices correlated with the variables that are related to the neuropathy. CONCLUSION: It concludes that evidence of nitrosative and to less extent the oxidative stress is associated with neuropathy in type 2 diabetes mellitus and their indices not correlated with variables related to neuropathy.


This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License, which permits unrestricted reproduction and distribution, for non-commercial purposes only; and use and reproduction, but not distribution, of adapted material for non-commercial purposes only, provided the original work is properly cited.

OTHER FORMATS

ACTIONS

RESOURSES